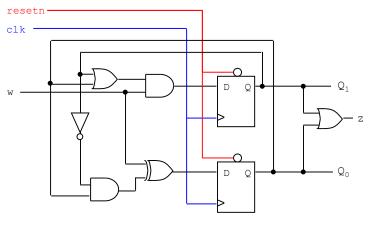

Solutions - Final Exam

(April 21st @ 7:00 pm)

Presentation and clarity are very important! Show your procedure!

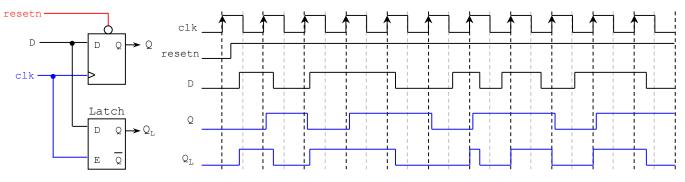
PROBLEM 1 (12 PTS)

• Complete the timing diagram of the following circuit. $G = G_3G_1G_2G_0 = 1001$, $Q = Q_3Q_2Q_1Q_0$


PROBLEM 2 (20 PTS)

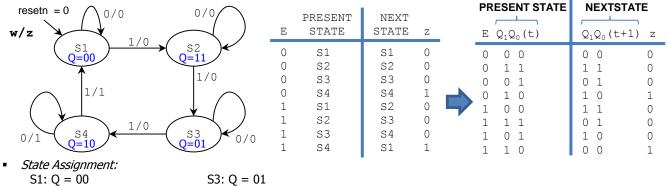

 Provide the State Diagram (any representation), the Excitation Table, and the Excitation equations of the following Finite State Machine: (12 pts)

 $\begin{array}{l} Q_1(t+1) = (Q_1 + Q_0)w \\ Q_0(t+1) = (\overline{Q_1}Q_0) \oplus w \\ z = Q_1 + Q_0 \end{array}$


- State Assignment:
 - ✓ S1: Q = 00
 - ✓ S2: Q = 01
 - ✓ S3: Q = 10
 - ✓ S4: Q = 11

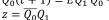
PRESENT STATE w $Q_1Q_0(t)$		z	W	PRESENT STATE	NEXT STATE	Z	W
0 0 0	0 0	0	0	S1	S1	0	
0 0 1	0 1	1	0	S2	S2	1	
0 1 0	0 0	1	0	S3	S1	1	
0 1 1	0 0	1	0	S4	S1	1	
1 0 0	0 1	0	1	S1	S2	0	
1 0 1	1 0	1	1	S2	S3	1	
1 1 0	1 1	1	1	S3	S4	1	
1 1 1	1 1	1	1	S4	S4	1	

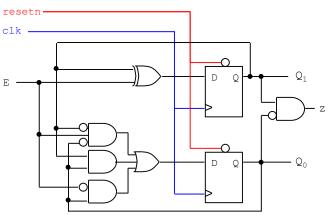
Complete the timing diagram of the circuit shown below: (8 pts)

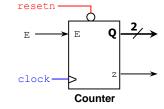


PROBLEM 5 (18 PTS)

- Design a counter using a Finite State Machine (FSM): Counter features:
 - ✓ Count: **00**, 11, 01, 10, **00**, 11, 01, ...
 - ✓ resetn: Asynchronous active-low input signal. It initializes the count to "00"
 - ✓ Input *E*: Synchronous input that increases the count when it is set to 1'.
 - ✓ output *z*: It becomes '1' when the count is 10.
- Provide the State Diagram (any representation), State Table, and the Excitation Table. Is this a Mealy or a Moore machine? Why? (10 pts)
- Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (5 pts)
- Sketch the circuit. (3 pts)

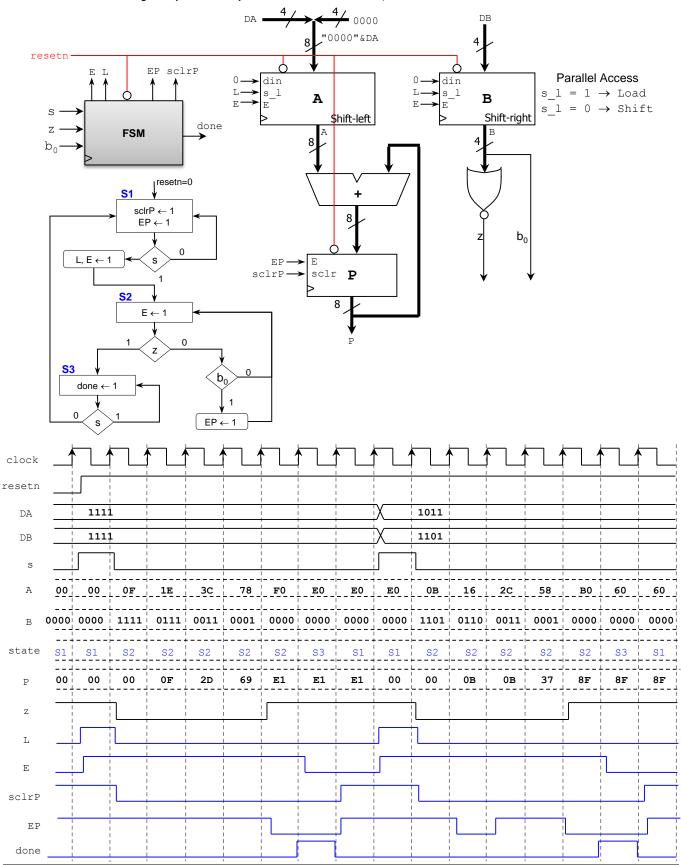

State Diagram, State Table, and Excitation Table:



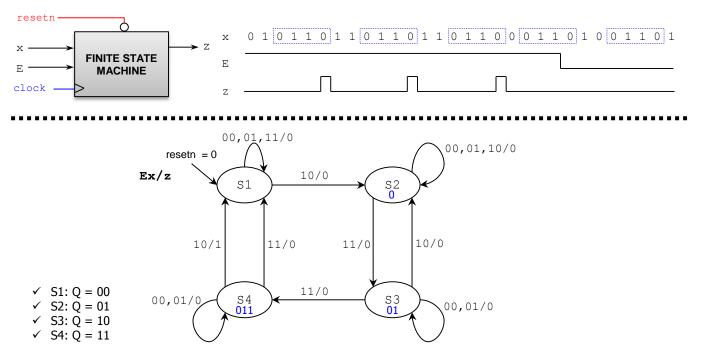

S2: Q = 11 S4: Q = 10

The output 'z' only depends on the present state \Rightarrow Moore FSM.

• Excitation equations, minimization and circuit implementation: $Q_1(t+1) = \overline{E}Q_1 + \overline{E}Q_1 = E \oplus Q_1$ $Q_0(t+1) = \overline{E}Q_1 \overline{Q_0} + \overline{E}Q_0 + Q_1Q_0$ resetn



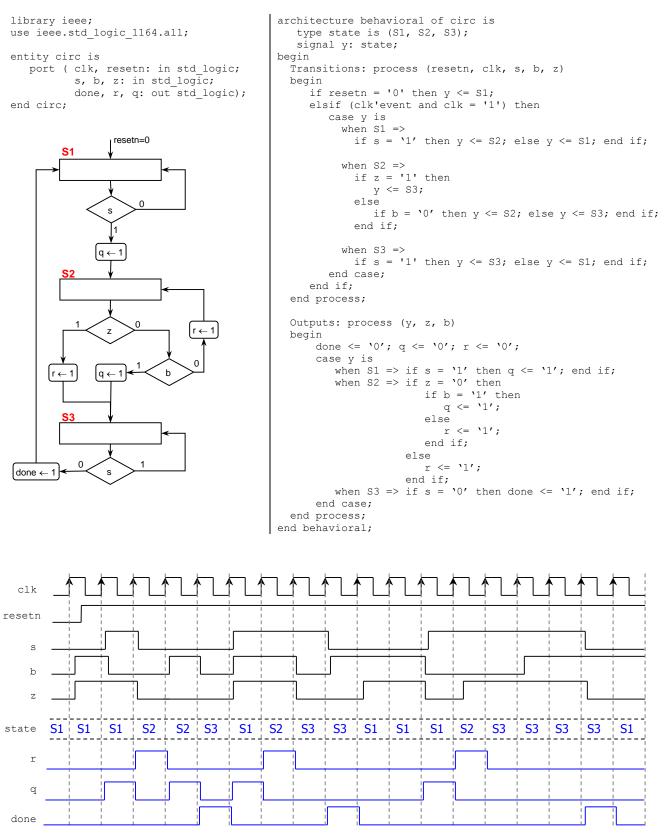
PROBLEM 3 (20 PTS)


• Iterative unsigned multiplier: Complete the following timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.

Register (for P): *sclr*: synchronous clear. Here, if *sclr* = E = 1, the register contents are initialized to 0. Parallel access shift register (for A and B): If E = 1: $s_l = 1 \rightarrow \text{Load}$, $s_l = 0 \rightarrow \text{Shift}$

PROBLEM 4 (15 PTS)

- Sequence detector: Draw the <u>State Diagram</u> (any representation) and the <u>Excitation Table</u> of a circuit with an input x and output z. The machine has to generate z = 1 when it detects the sequence 0110. Once the sequence is detected, the circuits looks for a new sequence.
- The signal *E* is an input enable: It validates the input *x*, i.e., if E = 1, *x* is valid, otherwise *x* is not valid.



Е	x	PRESENT STATE	NEXT STATE	Z
0	0	S1	S1	0
0	0	S2	S2	0
0	0	S3	S3	0
0	0	S4	S4	0
0	1	S1	S1	0
0	1	S2	S2	0
0	1	S3	s3	0
0	1	S4	S4	0
1	0	S1	S2	0
1	0	S2	S2	0
1	0	S3	S2	0
1	0	S4	S1	1
1	1	S1	S1	0
1	1	S2	S3	0
1	1	S3	S4	0
1	1	S4	S1	0

PRESENT STATE	NEXTSTATE		
$E \times Q_1 Q_0 (t)$	$Q_1Q_0(t+1)$ z		
0 0 0 0	0 0 0		
0001	010		
0 0 1 0	100		
0011	110		
0 1 0 0	0 0 0		
0101	010		
0 1 1 0	100		
0 1 1 1	110		
1000	010		
1001	010		
1010	010		
1011	0 0 1		
1 1 0 0	0 0 0		
1 1 0 1	100		
1 1 1 0	1 1 0		
1 1 1 1	0 0 0		

PROBLEM 6 (15 PTS)

- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. Is it a Mealy or Moore FSM?
- Complete the Timing Diagram.

The outputs 'done', 'q', 'r' depend on the present state as well as on the inputs \Rightarrow Mealy FSM.